本书系统阐述了人工智能的基本原理、方法和应用技术,以知识为线索,分为知识搜索、知识发现、知识推理和知识应用四个部分,全面反映了人工智能领域国内外的最新研究进展和动态。为便于读者深入学习,每章的最后一节均配有相关方法的案例和编程内容,大部分章末配有课后练习,读者可扫描书中二维码获取相关代码和参考答案。本书可作为高等学校智
本书从计算思维的角度出发,以人工智能相关问题为引导,在解决实际案例问题的过程中植入知识点,为各专业的学生在今后设计、构造和应用各种计算系统,求解本学科的问题奠定基础。全书内容包括计算与计算思维、程序设计与算法、人工智能与智能计算、网络与大数据这四大部分。本书适用于高等院校一年级新生的计算机导论等信息技术类基础课程,可作
《二维重复控制》总结作者多年来的研究成果和体会,综合重复控制领域的大量国内外文献资料,系统阐述二维重复控制的研究成果。主要内容包括:重复控制原理、重复控制系统设计方法和二维重复控制基本思想,重复控制的二维特性和重复控制系统的二维混合模型,二维重复控制系统稳定性分析,二维重复控制系统设计,二维重复控制系统鲁棒性分析与设计
本书首先介绍深度学习方面的数学知识与Python基础知识,线性模型中的线性回归模型和logistic模型;然后讲述正向传播算法、反向传播算法及深度神经网络的完整训练流程,输出层的激活函数和隐藏层的常见激活函数,深度学习的过拟合和欠拟合,应对过拟合的方法,以及使用TensorFlow2建立深度神经网络模型的步骤;接着介绍
虽然很多深度学习工具都使用Python,但PyTorch库是真正具备Python风格的。对于任何了解NumPy和scikit-learn等工具的人来说,上手PyTorch轻而易举。PyTorch在不牺牲高级特性的情况下简化了深度学习,它非常适合构建快速模型,并且可以平稳地从个人应用扩展到企业级应用。由于像苹果、Face
本书聚焦信息科学、生命科学、新能源、新材料等为代表的高科技领域,以及物理、化学、数学等基础科学的进展与新兴技术的交叉融合,其中70%的内容来源于IEEE计算机协会相关刊物内容的全文翻译,另外30%的内容由SteerTech和iCANXTalks上的国际知名科学家的学术报告、报道以及相关活动内容组成。本书将以创新的方式宣
本书系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。
本书结合了最新的深度学习技术应用成果,充分考虑了大学生的知识结构和学习特点,结合各个专业特点介绍了深度学习的基本概念及TensorFlow框架,以及深度学习在各个领域的具体应用。本书为高职高专院校深度学习基础课程教材重点介绍了神经网络与深度学习、TensorFlow环境使用、卷积神经网络、循环神经网络、迁移学习等内容。
本书从强化学习的基础知识出发,结合PyTorch深度学习框架,介绍深度强化学习算法各种模型的相关算法原理和基于PyTorch的代码实现。作为一本介绍深度强化学习知识的相关图书,本书介绍了常用的强化学习环境,基于价值网络的强化学习算法和基于策略梯度的强化学习算法,以及一些常用的比较流行的深度强化学习算法(如蒙特卡洛树搜索
强化学习作为机器学习及人工智能领域的一种重要方法,在游戏、自动驾驶、机器人路线规划等领域得到了广泛的应用。 本书结合了李宏毅老师的“深度强化学习”、周博磊老师的“强化学习纲要”、李科浇老师的“世界冠军带你从零实践强化学习”公开课的精华内容,在理论严谨的基础上深入浅出地介绍马尔可夫决策过程、蒙特卡洛方法、时序差分方法、