书单推荐
更多
新书推荐
更多

基于信息增强的图神经网络学习方法研究

基于信息增强的图神经网络学习方法研究

定  价:68 元

        

当前图书已被 3 所学校荐购过!
查看明细

  • 作者:王杰著
  • 出版时间:2025/2/1
  • ISBN:9787121493522
  • 出 版 社:电子工业出版社
  • 中图法分类:TP183 
  • 页码:377页
  • 纸张:
  • 版次:1
  • 开本:24cm
9
7
4
8
9
7
3
1
5
2
2
1
2
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用;第3章针对图神经网络在节点聚合过程中面临的节点邻域混杂的问题,提出了一种基于混合阶的图神经网络模型;第4章针对图神经网络在节点交互过程中面临的全局结构信息缺失问题,提出了一种基于拓扑结构自适应的图神经网络模型;第5章针对自监督信息缺失且包含噪声的问题,提出了一种图结构与节点属性联合学习的变分图自编码器模型;第6章针对节点自监督信息贡献不做区分的问题,提出了一种基于注意力机制的图对比学习模型;第7章总结全书并对图神经网络可能的研究方向进行展望。
 你还可能感兴趣
 我要评论
您的姓名   验证码: 图片看不清?点击重新得到验证码
留言内容