《河南省专升本考试考点精要·高等数学》包含河南省普通高校专科应届毕业生进入本科阶段学习招生考试要求的高等数学科目的基本内容。本书结合河南省专升本考试范围、试卷评分、重难点知识以及近15年考试试题, 由中公教育河南专升本考试研究院精心编写。本书共包含八章内容: 第一章为函数、极限、连续, 主要讲解函数、极限、连续的定义、运算及其基本性质; 第二章为一元函数微分学, 主要讲解导数与微分的概念、性质及其计算, 微分中值定理, 导数的应用; 第三章为一元函数积分学, 主要讲解原函数的概念, 不定积分的计算。
河南省专升本考试考点精要·高等数学
章函数、极限与连续
章函数、极限与连续
考情综述
考试大纲
1.函数
(1)函数的概念;(2)函数的性质;(3)函数的运算;(4)初等函数
2.极限
(1)极限的概念;(2)极限的性质;(3)无穷小量与无穷大量;(4)两个重要极限
3.连续
(1)函数的连续性;(2)函数的间断点;(3)闭区间上连续函数的性质
重难点
重点
1.函数的定义域、函数的表示法;
2.函数的奇偶性;
3.反函数;
4.两个重要极限;
5.函数的间断点;
6.分段函数的连续性
难点
1.无穷小的比较、等价无穷小替换;
2.零点定理
真题分布
年份
知识点
占比
2022函数的奇偶性、反函数、函数极限、等价无穷小替换、“抓大头”法求极限、根式有理化法求极限、分段函数的连续性、分段函数的间断点10%
2021函数的奇偶性、无穷大量、消公因式法求极限、等价无穷小替换、重要极限、极限等式求参数、函数的连续、间断点的类型16%
2020
函数的定义域、奇偶性、函数的表达式、函数极限、数列极限、无穷小的比较、两个重要极限、极限存在与连续的关系
18%
2019函数的定义域、奇偶性、函数的表达式、反函数、等价无穷小、间断点的类型、两个重要极限、无穷小的比较、分段函数的间断点、函数的连续15%
2018函数的定义域、奇偶性、函数的表达式、函数极限、两个重要极限、间断点的类型、无穷小的比较、无穷小量的性质、等价无穷小、函数的连续17%
真题分布
年份
知识点
占比
2017函数的定义域、奇偶性、函数的表达式、函数极限、数列极限、无穷小的比较、两个重要极限、极限存在与连续的关系19%
2016函数的定义域、奇偶性、函数的表达式、反函数、函数极限、数列极限、等价无穷小、分段函数的连续性、间断点的类型18%
考点精析
知识框架
基础知识精讲
一、函数
(一)函数的概念及表示法
1.定义
设x与y是两个变量,D是实数集R的某个非空子集,若对于D中的每一个x,按照对应法则f,总有唯一确定的值y与之对应,则称因变量y为自变量x的函数,记作y=f(x)。这里的D称为函数f的定义域,相应的函数值的全体所构成的集合称为函数f的值域。
【注】
①函数是从实数集到实数集的映射,它包括两大要素:定义域和对应法则。
②函数和变量的选取无关,只要定义域和对应法则相同,不管用什么变量表示函数的自变量和因变量,函数都是一样的。例如:y=x2,x∈[0,1]和u=t2,t∈[0,1]表示同一函数。
2.表示法
表示函数的主要方法有三种:解析法(公式法)、表格法、图形法。
(1)解析法(公式法):用数学式表示自变量和因变量对应关系的方法。
(2)表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法。
(3)图形法:用坐标平面上的点集{P(x,y)y=f(x),x∈D}来表示函数的方法。
(二)函数的性质
1.有界性
设函数f(x)的定义域为D,数集XD。如果存在正数M,使得对于任一x∈X,都有f(x)≤M,则称f(x)在X上有界。如果这样的M不存在,则称f(x)在X上无界。
【注】
①函数的有界性也可以通过上、下界的方式来定义:如果存在实数m和M,使得对任一x∈X,都有m≤f(x)≤M,则称函数f(x)在X上有界。其中m和M分别称为函数f(x)在X上的下界和上界。
②在上述定义中,m(M)是函数f(x)在X上的下(上)界,则任何比m小(比M大)的数,都是f(x)在X上的下(上)界。上界、下界不唯一。
③函数在X上有界的充要条件是它在X上既有上界又有下界。
2.单调性
设函数f(x)的定义域为D,区间ID。如果对于区间I上任意两点x1,x2,当x1<x2时,恒有
f(x1)<f(x2)(或f(x1)>f(x2)),
则称函数f(x)在区间I上单调增加(或单调减少)。
单调增加和单调减少的函数统称为单调函数。
(1)单调性的性质:
①如果f1(x),f2(x)都是增函数(或减函数),则f1(x)+f2(x)也是增函数(或减函数)。
②设f(x)是增函数,如果常数C>0,则C·f(x)是增函数;如果常数C<0,则C·f(x)是减函数。
③如果函数y=f(u)与函数u=g(x)增减性相同,则函数y=f[g(x)]为增函数;如果函数y=f(u)与函数u=g(x)增减性相反,则函数y=f[g(x)]为减函数。
(2)常见函数的单调区间:
常见函数
单调增区间
单调减区间
y=x2+ax+b
- a2,+∞
-∞,- a2
y=ex
(-∞,+∞)
无
y=lnx
(0,+∞)
无
y=sinx
2kπ- π2,2kπ+ π2
2kπ+ π2,2kπ+ 3π2
y=cosx
[2kπ-π,2kπ]
[2kπ,2kπ+π]
y=1x
无
(-∞,0),(0,+∞)
3.奇偶性
设函数f(x)的定义域D关于原点对称。如果对于任一x∈D,都有f(-x)=f(x),则称f(x)为偶函数;如果对于任一x∈D,都有f(-x)=-f(x),则称f(x)为奇函数。
(1)奇、偶函数的性质:
①偶函数的图像关于y轴对称,奇函数的图像关于原点对称。
②如果f1(x)和f2(x)都是偶函数(或奇函数),则对任意的常数k1,k2∈R,k1 f1(x)+k2 f2(x)仍是偶函数(或奇函数)。
③如果f1(x)和f2(x)的奇偶性相同,则f1(x)·f2(x)为偶函数;如果f1(x)和f2(x)的奇偶性相反,则f1(x)·f2(x)为奇函数。
(2)常见的偶函数:
y=x2k(k∈Z),y=cosx,y=x,
f(x),f(x)+f(-x)2, f(x)·f(-x),其中f(x)是定义在关于原点对称的区间上的任意函数。
(3)常见的奇函数:
y=x2k+1(k∈Z),y=sinx,y=tanx,y=cotx,y=ln(1+x2±x),
f(x)-f(-x)2,其中f(x)是定义在关于原点对称的区间上的任意函数。
4.周期性
设函数f(x)的定义域为D,如果存在一个正数T,使得对任一x∈D有x±T∈D,且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期。一般周期函数的周期是指小正周期。
【注】
①如果f(x)以T为小正周期,则对任意的非零常数C,Cf(x)仍然以T为小正周期, f(Cx)以TC为小正周期。
②如果f1(x)和f2(x)都以T为周期,则对于任意的常数k1,k2∈R,k1f1(x)+k2f2(x)仍然以T为周期。注意这时小正周期有可能缩小,如f1(x)=cos2x+sinx,f2(x)=sinx都以2π为小正周期,但f1(x)-f2(x)=cos2x以π为小正周期。
(三)函数的运算
1.四则运算
设函数f(x)和g(x)的定义域分别为D1和D2,且D=D1∩D2≠,则这两个函数经过四则运算之后能形成新的函数:
和(差)运算:f(x)±g(x),x∈D;
积运算:f(x)·g(x),x∈D;
商运算:f(x)g(x),x∈D\{xg(x)=0,x∈D}。
2.复合函数
设函数y=f(u)的定义域为D1,函数u=g(x)的定义域为D2。如果g(x)的值域g(D2)包含于f(u)的定义域D1,则可以定义函数y=f[g(x)],x∈D2为函数f(u)与g(x)的复合函数,记作y=f[g(x)]或fg。
【注】
①复合函数的基本思想是把y=f(x),x∈D1中的x进行推广,变成一个新的函数,这是我们认识和理解函数的基本方式。
②注意能够进行复合的前提条件是g(x)的值域g(D2)包含于f(u)的定义域D1。如果该条件不满足,只要g(x)的值域g(D2)和f(u)的定义域D1的交集不是空集,复合运算也可以进行,只不过此时复合之后函数的定义域变成了{xx∈D2且g(x)∈D1}。
3.反函数
设函数y=f(x)的定义域为D,其值域为f(D)。如果对于每一个y∈f(D),都有唯一确定的x∈D,使得y=f(x)(我们将该对应法则记作f -1)成立,则这个定义在f(D)上的函数x=f -1(y)就称为函数y=f(x)的反函数。
【注】
①不是所有的函数都有反函数。函数y=f(x),x∈D存在反函数的充要条件是对于定义域D中任意两个不相等的自变量x1,x2,有f(x1)≠f(x2)。一般来说,严格单调的函数一定有反函数。
②在同一坐标平面上,函数y=f(x)与其反函数y=f-1(x)的图像关于直线y=x对称。
(四)常见的函数类型
1.初等函数
(1)常用的基本初等函数有五类:指数函数、对数函数、幂函数、三角函数及反三角函数。
函数
名称函数的记号函数的图像函数的性质
指数
函数y=ax(a>0,a≠1)a)不论x为何值,y总为正数;
b)当x=0时,y=1
对数
函数y=logax(a>0,a≠1)a)其图像总位于y轴右侧,恒过(1,0)点;
b)当a>1时,函数y=logax在区间(0,1)的值为负,在区间(1,+∞)的值为正,在定义域内单调递增
幂函数y=xa,a为任意实数
这里只画出部分函数图像的
象限部分 令a=mn(mn是简分数),则
a)当m为偶数、n为奇数时,xa是偶函数;
b)当m,n都是奇数时,xa是奇函数;
c)当m为奇数、n为偶数时,xa没有奇偶性
三角
函数y=sinx(正弦函数)
这里只写出了正弦函数 a)正弦函数是以2π为周期的函数;
b)正弦函数是奇函数且sinx≤1
反三角
函数y=arcsinx(反正弦函数)
这里只写出了反正弦函数由于此对应法则确定了一个多值函数,因此将此值域限制在- π2,π2,并称其为反正弦函数的主值
(2)初等函数:由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数。
2.分段函数
(1)分段函数的基本形式:
f(x)=f1(x),x∈I1,f2(x),x∈I2,
︙︙
fn(x),x∈In。
(2)隐含的分段函数:
①绝对值函数:
f(x)=x=x,x≥0,-x,x<0,
其定义域是(-∞,+∞),值域是[0,+∞)。
②取整函数:f(x)=[x]表示不超过x的大整数。
③大值、小值函数:y=max{f(x),g(x)},y=min{f(x),g(x)}。
3.隐函数
如果变量x和y满足方程F(x,y)=0,当x取区间I内的任一值时,相应地总有满足该方程的唯一的y值存在,则这样确定的函数关系y=y(x)称为由方程F(x,y)=0确定的隐函数。
4.由参数方程定义的函数
若参数方程x=φ(t),y=ψ(t),α≤t≤β