适读人群 :本书是从零基础初学者的思维角度编写的,适合作为智能科学与技术、数据科学与大数据技术、计算机科学与技术以及相关专业的本科生或研究生的机器学习入门教材,也可供工程技术人员和自学读者学习参考。 l 语言幽默,举例生动,适合零基础读者学习机器学习。
l 广泛覆盖梯度下降、线性与非线性分类模型、感知机、神经网络、超参数调优、过度拟合和卷积神经网络等重要热门主题。
l 附带配套网站ProgML(www.progml.com),读者可自行参阅重要内容的额外解释与细节部分。
l 每章都附有可供读者完成的编程练习,练习还配备了参考答案。
l 附录中有Python简单入门教程与术语表。
人工智能系统主要使用机器学习技术解析外部环境数据,从数据中获取知识和模型参数,从而获得可用于决策或预测的数学模型。机器学习为人工智能系统提供了基础性的核心算法支撑。要想了解人工智能,首先必须牢固掌握机器学习的基础理论与应用技术。
机器学习主要是从经验数据等先验信息中产生或构造模型的训练学习算法,或者说机器学习是一门关于训练学习算法设计理论与应用技术的学问。我们知道,算法设计是一种思维的艺术,需要一定的抽象思维能力和数学知识。机器学习算法更是如此,不仅涉及微积分、数理统计、矩阵计算、图论等数学知识,还涉及众多最优化理论与方法,为广大初学者掌握机器学习知识带来一定的困难。
本书从一个完全不了解机器学习的程序员的视角出发,通过一系列生动有趣的具体应用实例,运用诙谐的语言以循序渐进的方式比较系统地介绍机器学习的本质思想、基本理论和重要算法,引导读者亲自动手从零开始打造和完善机器学习的底层代码,逐步消除对机器学习算法原理的认知盲点,使得广大初学者可以比较轻松地掌握机器学习和深度学习的基本理论和编程技术。
本节主要由三部分组成。第一部分主要通过一些有趣的应用实例介绍机器学习的基本概念、梯度下降优化算法,以及线性回归模型、线性分类模型、感知机模型等最基本的机器学习模型。第二部分主要介绍神经网络模型及相关的训练算法,首先使用一种非常易于理解的方式介绍感知机神经网络模型,使得读者能够很快认识到神经网络模型的本质,然后结合代码的编写过程由浅入深地介绍神经网络模型的训练步骤和训练算法,并以诙谐幽默的语言分析讨论超参数调优和模型测试的一般方法和基本技巧。第三部分介绍深度学习的基本原理和基本模型,着重讨论深度学习的过度拟合问题和正则化策略以及激活函数的设计思想,帮助广大初学者打下良好的深度学习知识基础和编程基础。
本书是从零基础初学者的思维角度编写的,使用非常朴实、幽默的语言深入浅出地表达知识内容,着重突出机器学习方法的思想内涵、本质和基本的编程技术,使得广大读者能够通过自己的努力较容易地掌握全书主要内容,适合作为智能科学与技术、数据科学与大数据技术、计算机科学与技术以及相关专业的本科生或研究生的机器学习入门教材,也可供工程技术人员和自学读者学习参考。
本书由汪雄飞、汪荣贵共同翻译完成。感谢研究生张前进、江丹、孙旭、尹凯健、王维、张珉、李婧宇、修辉、雷辉、张法正、付炳光、叶萌、朱正发、汤明空、韩梦雅、邓韬、王静、龚毓秀、李明熹、董博文、麻可可、李懂、刘兵等提供的帮助,感谢合肥工业大学和机械工业出版社的大力支持。
由于时间仓促,译文难免存在不妥之处,敬请读者批评指正!
译者
2021年3月
◆译者简介◆
汪荣贵
合肥工业大学计算机与信息学院(人工智能学院)教授、博士生导师,中国人工智能学会离散智能计算专委会委员,安徽省人工智能学会理事,主要研究方向为多媒体技术与深度学习、视频大数据与计算机视觉,已承担完成或正在承担国家重点研发计划项目、国家自然基金企业联合基金重点项目、国家自然基金面上项目、工信部电子产业基金项目、安徽省科技攻关重点项目(科技强警),以及企业委托研发项目等多个课题的研究,已发表高水平学术论文八十余篇,近期研究成果获中电集团科技进步一等奖、安徽省科技进步二等奖、合肥市科技进步一等奖,长期从事《离散数学》、《算法设计与分析》、《机器学习》、《计算机视觉》、《优化计算方法》等本科生或研究生课程的教学工作,编著出版的教材《离散数学及其应用》、《算法设计与应用》、《机器学习及其应用》、《机器学习简明教程》,以及近期出版的译著《优美的教学思维——问题求解与证明》、《机器学习编程——从编码到深度学习》深受广大读者的欢迎和好评。