![]() ![]() |
原子物理学 读者对象:高年级本科生及低年级研究生
本书主要是为本科高年级原子物理课程编写的教材,前几章中所包含的原子物理内容对于本科生来说是易于理解。本书介绍了原子物理的最新发展,及其在原子的玻色-爱因斯坦凝聚中物质波干涉测量和用捕获离子进行量子计算中的应用,为了弥补一般同类著作仅用量子理论处理原子结果的不足,本书特别强调实验基础,在后面的章节中尤其如此。本书还附有大量习题以供读者联系。
更多科学出版社服务,请扫码获取。 ![]()
This book is primarily intended to accompany an undergraduate coursein atomic physics. It covers the core material and a selection of moreadvanced topics that illustrate current research in this field. The firstsix chapters describe the basic principles of atomic structure, startingin Chapter 1 with a review of the classical ideas. Inevitably the dis-cussion of the structure of hydrogen and helium in these early chaptershas considerable overlap with introductory quantum mechanics courses,but an understanding of these simple systems provides the basis for thetreatment of more complex atoms in later chapters. Chapter 7 on theinteraction of radiation with atoms marks the transition between theearlier chapters on structure and the second half of the book which cov-ers laser spectroscopy, laser cooling, Bose-Einstein condensation of di-lute atomic vapours, matter-wave interferometry and ion trapping. Theexciting new developments in laser cooling and trapping of atoms andBose-Einstein condensation led to Nobel prizes in 1997 and 2001, respec-tively. Some of the other selected topics show the incredible precisionthat has been achieved by measurements in atomic physics experiments.This theme is taken up in the final chapter that looks at quantum infor-mation processing from an atomic physics perspective; the techniquesdeveloped for precision measurements on atoms and ions give exquisitecontrol over these quantum systems and enable elegant new ideas fromquantum computation to be implemented.
The book assumes a knowledge of quantum mechanics equivalent to anintroductory university course, e.g. the solution of the SchrSdinger equa-tion in three dimensions and perturbation theory. This initial knowledgewill be reinforced by many examples in this book; topics generally re-garded as difficult at the undergraduate level are explained in some de-tail, e.g. degenerate perturbation theory. The hierarchical structure ofatoms is well described by perturbation theory since the different layersof structure within atoms have considerably different energies associatedwith them, and this is reflected in the names of the gross, fine and hyper-fine structures. In the early chapters of this book, atomic physics mayappear to be simply applied quantum mechanics, i.e. we write down theHamiltonian for a given interaction and solve the SchrSdinger equationwith suitable approximations. I hope that the study of the more ad-vanced material in the later chapters will lead to a more mature anddeeper understanding of atomic physics. Throughout this book the ex-perimental basis of atomic physics is emphasised and it is hoped that the reader will gain some factual knowledge of atomic spectra.
目录
1 早期原子物理学 1 1.1 导引 1 1.2 氢原子光谱 1 1.3 Bohr理论 3 1.4 相对论效应 5 1.5 Moseley和原子数 7 1.6 辐射衰变 11 1.7 爱因斯坦A系数和B系数 11 1.8 Zeeman效应 13 1.8.1 Zeeman效应的实验观察 17 1.9 原子单位总结 18 习题 19 2 氢原子 22 2.1 Schrodinger方程 22 2.1.1 角向方程的解 23 2.1.2 径向方程的解 26 2.2 跃迁 29 2.2.1 选择定则 30 2.2.2 对θ的积分 32 2.2.3 宇称 32 2.3 精细结构 34 2.3.1 电子的自旋 35 2.3.2 自旋轨道相互作用 36 2.3.3 氢原子的精细结构 38 2.3.4 Lamb位移 40 2.3.5 精细能级之间的跃迁 41 进一步阅读 42 习题 42 3 氦原子 45 3.1 氦原子的基态 45 3.2 氦原子的激发态 46 3.2.1 自旋本征态 51 3.2.2 氦原子中的跃迁 52 3.3 氦原子中的积分估计 53 3.3.1 基态 53 3.3.2 激发态:直接积分 54 3.3.3 激发态:交换积分 55 进一步阅读 56 习题 58 4 碱金属 60 4.1 壳层结构和周期表 60 4.2 量子数亏损 61 4.3 中心场近似 64 4.4 Schrodinger方程的数值解 68 4.4.1 自洽解 70 4.5 自旋轨道相丘作用:量子方法 71 4.6 碱金属的精细结构 73 4.6.1 精细结构跃迁的相对强度 74 进一步阅读 75 习题 76 5 L-S耦合方式 80 5.1 L-S耦合方式的精细结构 83 5.2 j-j偶合方式 84 5.3 居间耦合:不同耦合方式之间的跃迁 86 5.4 L-S耦合方式的选择定则 90 5.5 Zeeman效应 90 5.6 93 进一步阅读 94 习题 94 6 超精细结构和同位素移位 97 6.1 超精细结构 97 6.1.1 s电子的超精细结构 97 6.1.2 氢微波激射器 100 6.1.3 l≠0时的超精细结构 101 6.1.4 超精细结构与精细结构的比较 l02 6.2 同位素移位 105 6.2.1 质量效应 105 6.2.2 体积移位 106 6.2.3 原子揭示的原子核信息 108 6.3 Zeeman效应和超精细结构 108 6.3.1 弱场下的Zeeman效应,μBB<A 109 6.3.2 强场下的Zeeman效应,μBB>A 110 6.3.3 111 6.4 超精细结构的测量 112 6.4.1 原子束技术 114 6.4.2 原子钟 118 进一步阅读 119 习题 120 7 原子与辐射的相互作用 123 7.1 方程的建立 123 7.1.1 振荡电场的扰动 124 7.1.2 旋波近似 125 7.2 爱因斯坦B系数 126 7.3 与单色辐射的相互作用 127 7.3.1 π脉冲与π/2脉冲 128 7.3.2 Bloch矢量和Bloch球面 128 7.4 Ramsey条纹 132 7.5 辐射阻尼 134 7.5.1 经典偶极辐射阻尼 135 7.5.2 光Bloch球面 137 7.6 光吸收截面 138 7.6.1 纯辐射展宽截面 141 7.6.2 饱和强度 142 7.6.3 功率展宽 143 7.7 交流Stark效应/光频移 144 7.8 145 7.9 146 进一步阅读 147 习题 148 8 无Doppler激光光谱 151 8.1 谱线的Doppler展宽 151 8.2 交叉束技术 153 8.3 饱和吸收光谱 155 8.3.1 饱和吸收光谱的原理 156 8.3.2 饱和吸收光谱的穿越共振 159 8.4 双光子光谱 163 8.5 激光光谱的校准168 8.5.1 相对频率的校准 168 8.5.2 绝对校准 169 8.5.3 光频梳 171 进一步阅读 175 习题 175 9 原子冷却与捕陷 178 9.1 散射力 179 9.2 减慢原子束 182 9.2.1 啁啾冷却 184 9.3 光学黏胶技术 185 9.3.1 Doppler冷却的极限 188 9.4 磁光阱 190 9.5 偶极力导论 194 9.6 偶极力理论 197 9.6.1 光学品格 201 9.7 Sisyphus冷却技术 203 9.7.1 概论 203 9.7.2 Sisyphus冷却 204 9.7.3 Sisyphus冷却机制的极限 207 9.8 Raman跃迁 208 9.8.1 Raman跃迁的速度选择 208 9.8.2 Raman冷却 210 9.9 原子喷泉 211 9.10 总结 213 习题 214 10 磁捕陷、蒸发冷却和Bose-Einstein凝聚 218 10.1 磁捕陷的原理 218 10.2 磁捕陷 220 10.2.1 径向约束 220 10.2.2 轴向约束 221 10.3 蒸发冷却 224 10.4 Bose-Einstein凝聚 226 10.5 捕陷原子蒸气中的Bose-EinsLein凝聚 228 10.5.1 散射长度 229 10.6 种Bose-Einstein凝聚体 234 10.7 Bose凝聚气体的性质 239 10.7.1 声速 239 10.7.2 消退长度 240 10.7.3 Bose-Einstein凝聚的相干性 240 10.7.4 原子激光 242 10.8 总结 242 习题 243 11 原子干涉 246 11.1 杨氏双缝实验 247 11.2 原子的衍射光栅 249 11.3 三光栅干涉仪 251 11.4 旋转的测量 251 11.5 光对原子的衍射 253 11.5.1 Raman跃迁干涉测量技术 255 11.6 总结 257 进一步阅读 258 习题 258 12 离子阱 259 12.1 电场中离子的受力 259 12.2 Earnshaw定理 260 12.3 Paul阱 261 12.3.1 旋转马鞍上小球的平衡 262 12.3.2 交流场中的有效势 262 12.3.3 线性Paul阱 262 12.4 缓冲气冷却 266 12.5 激光冷却捕陷离子 267 12.6 量子跳跃 269 12.7 Penning阱和Paul阱 271 12.7.1 Penning阱 272 12.7.2 离子的质谱 274 12.7.3 电子的反常磁矩 274 12.8 电子束离子阱 275 12.9 解析侧带冷却 277 12.10 离子阱总结 279 进一步阅读 279 习题 280 13 量子计算 282 13.1 量子比特及其性质 283 13.1.1 纠缠 284 13.2 量子逻辑门 287 13.2.1 设计CNOT门 287 13.3 量子并行算法 289 13.4 量子计算机综述 291 13.5 退相干和量子纠错 291 13.6 总结 293 进一步阅读 294 习题 294 附录A 微扰理论 298 A.1 微扰理论的数学 298 A.2 相近频率经典振子的相互作用 299 附录B 静电能的计算 302 附录C 磁偶极跃迁 305 附录D 饱和吸收的线形 307 附录E Raman跃迁和双光子跃迁 310 E.1 Raman跃迁 310 E.2 双光子跃迁 313 附录F Bose-Einstein凝聚有关统计力学知识 315 F.1 光子的统计力学 315 F.2 Bose-Einstein凝聚 316 F.2.1 谐振阱中的Bose-Einstein凝聚 318 参考文献 319 索引 326 Contents 1 Early atomic physics 1 1.1 Introduction 1 1.2 Spectrum of atomic hydrogen 1 1.3 Bohr's theory 3 1.4 Relathristic effects 5 1.5 Moseley and the atomic number 7 1.6 Radiative decay 11 1.7 Einstein A and B coefficients 11 1.8 The Zeeman effect 13 1.8.1 Experimental obserxfation of the Zeeman effect 17 1.9 Summary of atomic units 18 Exercises 19 2 The hydrogen atom 22 2.1 The Schrodinger equation 22 2.1.1 Solution of the angular equation 23 2.1.2 Solution of the radial equation 26 2.2 Transitions 29 2.2.1 Selection rules 30 2.2.2 Integration with respect to θ 32 2.2.3 Parity 32 2.3 Fine structure 34 2.3.1 Spin of the electron 35 2.3.2 The spin-orbit interaction 36 2.3.3 The fine structure of hydrogen 38 2.3.4 The Lamb shift 40 2.3.5 Transitions between fine-structure levels 41 Further reading 42 Exercises 42 3 Helium 45 3.1 The ground state of helium 45 3.2 Excited states of helium 46 3.2.1 Spin eigenstates 51 3.2.2 Transitions in helium 52 3.3 Evaluation of the integrals in helium 53 3.3.1 Ground state 53 3.3.2 Excited states:the direct integral 54 3.3.3 Excited states:the exchange integral 55 Further reading 56 Exercises 58 4 The alkalis 60 4.1 Shell structure and the periodic table 60 4.2 The quantum defect 61 4.3 The central-field approximation 64 4.4 Numerical solution of the Schrodinger equation 68 4.4.1 Self-consistent solutions 70 4.5 The spin-orbit interaction:a quantum mechanical approach 71 4.6 Fine structure in the alkalis 73 4.6.1 Relative intensities of fine-structure transitions 74 Further reading 75 Exercises 76 5 The LS-coupling scheme 80 5.1 Fine structure in the /S-coupling scheme 83 5.2 The jj-coupling scheme 84 5.3 Intermediate coupling:the transition between coupling schemes 86 5.4 Selection rules in the /S-coupling scheme 90 5.5 The Zeeman effect 90 5.6 Summary 93 Further reading 94 Exercises 94 6 Hyperfine structure and isotope shift 97 6.1 Hyperfine structure 97 6.1.1 Hyperfine structure for s-electrons 97 6.1.2 Hydrogenmaser 100 6.1.3 Hyperfine structure for l≠0 101 6.1.4 Comparison of hyperfine and fine structures 102 6.2 Isotope shift 105 6.2.1 Mass effects 105 6.2.2 Volume shift 106 6.2.3 Nuclear information from atoms 108 6.3 Zeeman effect and hyperfine structure 108 6.3.1 Zeeman effect of a weak field,μBB<A 109 6.3.2 Zeeman effect of a strong field,μBB>A 110 6.3.3 Intermediate field strength 111 6.4 Measurement of hyperfine structure 112 6.4.1 The atomic-beam technique 114 6.4.2 Atomic clocks 118 Further reading 119 Exercises 120 7 The interaction of atoms with radiation 123 7.1 Setting up the equations 123 7.1.1 Perturbation by an oscillating electric field 124 7.1.2 The rotating-wave approximation 125 7.2 The Einstein B coefficients 126 7.3 Interaction with monochromatic radiation 127 7.3.1 The concepts ofπ-pulses and π/2-pulses 128 7.3.2 The Bloch vector and Bloch sphere 128 7.4 Ramsey fringes 132 7.5 Radiative damping 134 7.5.1 The damping of a classical dipole 135 7.5.2 The optical Bloch equations 137 7.6 The optical absorption cross-section 138 7.6.1 Cross-section for pure radiative broadening 141 7.6.2 The saturation intensity 142 7.6.3 Power broadening 143 7.7 The a.c. Stark effect or light shift 144 7.8 Comment on semiclassical theory 145 7.9 Conclusions 146 Further reading 147 Exercises 148 8 Doppler-free laser spectroscopy 151 8.1 Doppler broadening of spectral lines 151 8.2 The crossed-beam method 153 8.3 Saturated absorption spectroscopy 155 8.3.1 Principle of saturated absorption spectroscopy 156 8.3.2 Cross-over resonances in saturation spectroscopy 159 8.4 Two-photon spectroscopy 163 8.5 Calibration in laser spectroscopy 168 8.5.1 Calibration of the relative frequency 168 8.5.2 Absolute calibration 169 8.5.3 0ptical frequency combs 171 Further reading 175 Exercises 175 9 Laser cooling and trapping 178 9.1 The scattering force 179 9.2 Slowing an atomic beam 182 9.2.1 Chirp cooling 184 9.3 The optical molasses technique 185 9.3.1 The Doppler cooling limit 188 9.4 The magneto-optical trap 190 9.5 Introduction to the dipole force 194 9.6 Theory of the dipole force 197 9.6.1 0pticallattice 201 9.7 The Sisyphus cooling technique 203 9.7.1 General remarks 203 9.7.2 Detailed description of Sisyphus cooling 204 9.7.3 Limit of the Sisyphus cooling mechanism 207 9.8 Raman transitions 208 9.8.1 Velocity selection by Raman transitions 208 9.8.2 Raman cooling 210 9.9 An atomic fountain 211 9.10 Conclusions 213 Exercises 214 10 Magnetic trapping evaporative cooling and Bose-Einstein condensation 218 10.1 Principle of magnetic trapping 218 10.2 Magnetic trapping 220 10.2.1 Confinement in the radial direction 220 10.2.2 Confinement in the axial direction 221 10.3 Evaporative cooling 224 10.4 Bose-Einstein condensation 226 10.5 Bose-Einstein condensation in trapped atomic vapours 228 10.5.1 The scattering length 229 10.6 A Bose-Einstein condensate 234 10.7 Properties of Bose-condensed gases 239 10.7.1 Speed of sound 239 10.7.2 Healinglength 240 10.7.3 The coherence of a Bose-Einstein condensate 240 10.7.4 The atom laser 242 10.8 Conclusions 242 Exercises 243 11 Atom interferometry 246 11.1 Young's double-slit experiment 247 11.2 A diffraction grating for atoms 249 11.3 The three-grating interferometer 251 11.4 Measurement of rotation 251 11.5 The diffraction of atoms by light 253 11.5.1 Interferometry with Raman transitions 255 11.6 Conclusions 257 Further reading 258 Exercises 258 12 Ion traps 259 12.1 The force on ions in an electric field 259 12.2 Earnshaw's theorem 260 12.3 The Paul trap 261 12.3.1 Equilibrium of a ball on a rotating saddle 262 12.3.2 The effective potential in an a.c. field 262 12.3.3 The linear Paul trap 262 12.4 Buffer gas cooling 266 12.5 Laser cooling of trapped ions 267 12.6 Quantum jumps 269 12.7 The Penning trap and the Paul trap 271 12.7.1 The Penning trap 272 12.7.2 Mass spectroscopy of ions 274 12.7.3 The anomalous magnetic moment of the electron 274 12.8 Electron beam ion trap 275 12.9 Resolved sideband cooling 277 12.10 Summary of ion traps 279 Further reading 279 Exercises 280 13 Quantum computing 282 13.1 Qubits and their properties 283 13.1.1 Entanglement 284 13.2 A quantum logic gate 287 13.2.1 Making a CNOT gate 287 13.3 Parallelism in quantum computing 289 13.4 Summary of quantum computers 291 13.5 Decoherence and quantum error correction 291 13.6 Conclusion 293 Further reading 294 Exercises 294 A Appendix A:Perturbation theory 298 A.1 Mathematics of perturbation theory 298 A.2 Interaction of classical oscillators of similar frequencies 299 B Appendix B:The calculation of electrostatic energies 302 C Appendix C:Magnetic dipole transitions 305 D Appendix D:The line shape in saturated absorption spectroscopy 307 E Appendix E:Raman and two-photon transitions 310 E.1 Raman transitions 310 E.2 Two-photon transitions 313 F Appendix F:The statistical mechanics of Bose-Einstein condensation 315 F.1 The statistical mechanics of photons 315 F.2 Bose-Einstein condensation 316 F.2.1 Bose-Einstein condensation in a harmonic trap 318 References 319 Index 326
你还可能感兴趣
我要评论
|