《机器学习与人工智能》涵盖了与人工智能相关的机器学习核心方法,包括深度卷积神经网络、循环神经网络、生成对抗网络、蒙特卡罗树搜索、强化学习。《机器学习与人工智能》也包括一些应用非常广泛的机器学习方法,例如,支持向量机、决策树和随机森林、隐马尔可夫模型、聚类与自组织映射。《机器学习与人工智能》还包含一些重要的大数据分析方法
本教材由广州华立科技职业学院计算机信息工程学院院长牵头,联合省内外多所院校共同编写。本书是一本基础性强、可读性好、适合于高职学生学习的人工智能通识课教材,在简述人工智能的理论与方法基础上,较详细地介绍了人工智能在工业领域中的应用,包括人工智能基础知识专家系统、智能控制、计算智能及其应用、数据挖掘与智能决策、智能制造、智
全书共11章,分别为人工智能的基本概念与主要研究领域、知识表示与知识图谱、确定性推理方法、不确定性推理方法、搜索求解策略、进化算法、及应用、群智能算法及其应用、人工神经网络、专家系统、自然语言理解及其应用。附录中给出了本书习题的简要解答和实验指导书。本书主要作为计算机类、自动化类、电气类、电子信息类、机械类等专业本科生
人工智能融合浪潮影响今日人类文明社会的每个国家、地区,影响今日人类文明社会的每个企业、组织和每个人,没有一个国家、一个地区、一个企业、一个组织可以例外,也没有一个可以独善其身。人工智能融合浪潮推进着人类文明社会进入一个崭新的人工智能时代。本书通过人工智能的发展和社会变化,讲述现在人工智能达到的成就和未来的发展趋势。
计算智能是人工智能领域较为前沿的研究方向,它是受“大自然智慧”启发而被设计出的一类算法的统称。计算智能所具有的全局搜索、高效并行等优点为解决复杂优化问题提供了新思路和新手段,引起了国内外学者的广泛重视并掀起了研究热潮。目前,计算智能的相关技术已成功应用于信息处理、调度优化、工程控制、经济管理等众多领域。 本书在归纳近年
在你的iOS,macOS,tvOS和watchOS的Swift应用中创建和实现基于人工智能和机器学习的功能。有了这本实用的指导书,各种背景德程序员都将找到一个Swift一站式人工智能和机器学习解决方案。你将学习如何通过强大的人工智能软件来实现识别图像、进行预测、生成内容、提出建议等功能。
《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、
本书从统计学观点出发,以数理统计为基础,全面系统地介绍了统计机器学习的主要方法。内容涉及回归(线性回归、多项式回归、非线性回归、岭回归,以及LASSO等)、分类(感知机、逻辑回归、朴素贝叶斯、决策树、支持向量机、人工神经网络等)、聚类(K均值、EM算法、密度聚类等)、蒙特卡洛采样(拒绝采样、自适应拒绝采样、重要性采样、
本书通过正在学习机器学习的程序员绫乃和她朋友美绪的对话,结合回归和分类的具体问题,逐步讲解了机器学习中实用的数学基础知识。其中,重点讲解了容易成为学习绊脚石的数学公式和符号。同时,还通过实际的Python编程讲解了数学公式的应用,进而加深读者对相关数学知识的理解。
《机器学习中的基本算法》共八章.第1章和第2章简要介绍了机器学习的基本概念、研究内容、算法体系,以及相关的优化理论与优化算法.第3章和第4章详细介绍了几类作为分类器和回归器的支持向量机算法,包括算法出发点、建模思想、理论推导和算法在数据分类、识别、拟合、预测等方面的应用.第5章和第6章着重介绍了两类常用的数据预处理方法