深度学习作为人工智能领域的“排头兵”,将在未来的新一轮产业升级中起到至关重要的作用。本书以“理论+实践”的形式帮助读者快速建立深度学习知识体系,不仅能在算法层面上理解各种神经网络模型,而且能借助功能强大且极易上手的Keras框架,熟练地搭建和训练模型,应用于解决实际问题。全书共12章,内容涵盖入门深度学习的绝大部分基础
本书针对产业界在智能化过程中普遍面临的数据不足问题,详细地阐述了联邦学习如何帮助企业引入更多数据、提升机器学习模型效果。互联网数据一般分布在不同的位置,受隐私保护法规限制不能共享,形成了“数据孤岛”。联邦学习像“数据孤岛”之间的特殊桥梁,通过传输变换后的临时变量,既能实现模型效果提升,又能确保隐私信息的安全。本书介绍了
近年来,演化计算作为计算智能中传统的优化技术,已经广泛应用于求解各种数据挖掘问题,形成了一种基于遗传的机器学习新范式学习分类器。一方面,在真实场景中采集的原始数据不可避免地包含着冗余乃至噪声属性的信息,这些不相关的特征将对学习分类器算法的学习性能与计算效率造成负面影响。另一方面,学习分类器以显式规则表示目标概念,在监督
本书内容涉及到了一些机器学习算法的并行化,使得大规模分布式机器学习算法成为可能,内容分为四个大部分:大规模机器学习的框架、监督和非监督学习算法、其它的学习算法和相关应用部分。
周志华老师的《机器学习》(俗称“西瓜书”)是机器学习领域的经典入门教材之一。本书(俗称“南瓜书”)基于Datawhale成员自学“西瓜书”时记下的笔记编著而成,旨在对“西瓜书”中重难点公式加以解析,以及对部分公式补充具体的推导细节。 全书共16章,与“西瓜书”章节、公式对应,每个公式的推导和解析都以本科数学基础的视角
本书详细阐述了与神经进化网络开发相关的基本解决方案,主要包括神经进化方法概述、Python库和环境设置、使用NEAT进行XOR求解器优化、摆杆平衡实验、自主迷宫导航、新颖性搜索优化方法、基于超立方体的NEAT和视觉辨别、ES-HyperNEAT和视网膜问题、协同进化和SAFE方法、深度神经进化等内容。此外,本书还提供了
机器学习虽然对改进产品性能和推进研究有很大的潜力,但无法对它们的预测做出解释,这是当前面临的一大障碍。《可解释机器学习:黑盒模型可解释性理解指南》书是一本关于使机器学习模型及其决策具有可解释性的书。本书探索了可解释性的概念,介绍了简单的、可解释的模型,例如决策树、决策规则和线性回归,重点介绍了解释黑盒模型的、与模型无关
这是一本写给普通人了解AI的趣味科普,它还有超级可爱的漫画!这本书“非常易读、有料,而且妙趣横生、令人捧腹”(《万物发明指南》作者瑞安·诺思),带领普通人走进人工智能那个奇妙古怪又不可思议的世界,是一场幽默可爱的导览。本书的主要内容是人工智能可以做什么、不能做什么,以及它为什么已经影响了我们生活的方方面面
本书是一本针对所有层次的智能技术读者而作的基于Python实现智能技术的入门书。全书分四大部分:第一部分介绍用Python获取数据所必须了解的基本概念,其中包括Python语法,HTTP标记和基本文件存储,以及从网页中爬取数据的方法和爬虫框架等内容。第二部分讨论了JSON数据格式和基于结构化和非结构化数据库的存储,包括
书特色主要有:1、注重实例的一本教材尽可能简化繁琐的数学推导和定理证明,将重点放在解决问题的原理和思路上,并介绍一些经典有趣的实例。2、适合不同专业层次的教材选择结合教学、科研及应用需求,注重概念清晰、既有深度又有广度、理论性较强的教材,着力于内容的体系化,适合不同层次专业选用。3、注重能力评价的考核方式注重能力评价的